1 module chipmunk.cpTransform;
2 
3 import chipmunk.chipmunk_types;
4 import chipmunk.cpBB;
5 import chipmunk.cpVect;
6 
7 extern (C):
8 
9 /// Identity transform matrix.
10 static const cpTransform cpTransformIdentity = {1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f};
11 
12 /// Construct a new transform matrix.
13 /// (a, b) is the x basis vector.
14 /// (c, d) is the y basis vector.
15 /// (tx, ty) is the translation.
16 static cpTransform
17 cpTransformNew(cpFloat a, cpFloat b, cpFloat c, cpFloat d, cpFloat tx, cpFloat ty)
18 {
19 	cpTransform t = {a, b, c, d, tx, ty};
20 	return t;
21 }
22 
23 /// Construct a new transform matrix in transposed order.
24 static cpTransform
25 cpTransformNewTranspose(cpFloat a, cpFloat c, cpFloat tx, cpFloat b, cpFloat d, cpFloat ty)
26 {
27 	cpTransform t = {a, b, c, d, tx, ty};
28 	return t;
29 }
30 
31 /// Get the inverse of a transform matrix.
32 static cpTransform
33 cpTransformInverse(cpTransform t)
34 {
35   cpFloat inv_det = 1.0/(t.a*t.d - t.c*t.b);
36   return cpTransformNewTranspose(
37      t.d*inv_det, -t.c*inv_det, (t.c*t.ty - t.tx*t.d)*inv_det,
38     -t.b*inv_det,  t.a*inv_det, (t.tx*t.b - t.a*t.ty)*inv_det
39   );
40 }
41 
42 /// Multiply two transformation matrices.
43 static cpTransform
44 cpTransformMult(cpTransform t1, cpTransform t2)
45 {
46   return cpTransformNewTranspose(
47     t1.a*t2.a + t1.c*t2.b, t1.a*t2.c + t1.c*t2.d, t1.a*t2.tx + t1.c*t2.ty + t1.tx,
48     t1.b*t2.a + t1.d*t2.b, t1.b*t2.c + t1.d*t2.d, t1.b*t2.tx + t1.d*t2.ty + t1.ty
49   );
50 }
51 
52 /// Transform an absolute point. (i.e. a vertex)
53 static cpVect
54 cpTransformPoint(cpTransform t, cpVect p)
55 {
56   return cpv(t.a*p.x + t.c*p.y + t.tx, t.b*p.x + t.d*p.y + t.ty);
57 }
58 
59 /// Transform a vector (i.e. a normal)
60 static cpVect
61 cpTransformVect(cpTransform t, cpVect v)
62 {
63   return cpv(t.a*v.x + t.c*v.y, t.b*v.x + t.d*v.y);
64 }
65 
66 /// Transform a cpBB.
67 static cpBB
68 cpTransformbBB(cpTransform t, cpBB bb)
69 {
70 	cpVect center = cpBBCenter(bb);
71 	cpFloat hw = (bb.r - bb.l)*0.5;
72 	cpFloat hh = (bb.t - bb.b)*0.5;
73 
74 	cpFloat a = t.a*hw, b = t.c*hh, d = t.b*hw, e = t.d*hh;
75 	cpFloat hw_max = cpfmax(cpfabs(a + b), cpfabs(a - b));
76 	cpFloat hh_max = cpfmax(cpfabs(d + e), cpfabs(d - e));
77 	return cpBBNewForExtents(cpTransformPoint(t, center), hw_max, hh_max);
78 }
79 
80 /// Create a transation matrix.
81 static cpTransform
82 cpTransformTranslate(cpVect translate)
83 {
84   return cpTransformNewTranspose(
85     1.0, 0.0, translate.x,
86     0.0, 1.0, translate.y
87   );
88 }
89 
90 /// Create a scale matrix.
91 static cpTransform
92 cpTransformScale(cpFloat scaleX, cpFloat scaleY)
93 {
94 	return cpTransformNewTranspose(
95 		scaleX,    0.0, 0.0,
96 		   0.0, scaleY, 0.0
97 	);
98 }
99 
100 /// Create a rotation matrix.
101 static cpTransform
102 cpTransformRotate(cpFloat radians)
103 {
104 	cpVect rot = cpvforangle(radians);
105 	return cpTransformNewTranspose(
106 		rot.x, -rot.y, 0.0,
107 		rot.y,  rot.x, 0.0
108 	);
109 }
110 
111 /// Create a rigid transformation matrix. (transation + rotation)
112 static cpTransform
113 cpTransformRigid(cpVect translate, cpFloat radians)
114 {
115 	cpVect rot = cpvforangle(radians);
116 	return cpTransformNewTranspose(
117 		rot.x, -rot.y, translate.x,
118 		rot.y,  rot.x, translate.y
119 	);
120 }
121 
122 /// Fast inverse of a rigid transformation matrix.
123 static cpTransform
124 cpTransformRigidInverse(cpTransform t)
125 {
126   return cpTransformNewTranspose(
127      t.d, -t.c, (t.c*t.ty - t.tx*t.d),
128     -t.b,  t.a, (t.tx*t.b - t.a*t.ty)
129   );
130 }
131 
132 //MARK: Miscellaneous (but useful) transformation matrices.
133 // See source for documentation...
134 
135 static cpTransform
136 cpTransformWrap(cpTransform outer, cpTransform inner)
137 {
138   return cpTransformMult(cpTransformInverse(outer), cpTransformMult(inner, outer));
139 }
140 
141 static cpTransform
142 cpTransformWrapInverse(cpTransform outer, cpTransform inner)
143 {
144   return cpTransformMult(outer, cpTransformMult(inner, cpTransformInverse(outer)));
145 }
146 
147 static cpTransform
148 cpTransformOrtho(cpBB bb)
149 {
150   return cpTransformNewTranspose(
151     2.0/(bb.r - bb.l), 0.0, -(bb.r + bb.l)/(bb.r - bb.l),
152     0.0, 2.0/(bb.t - bb.b), -(bb.t + bb.b)/(bb.t - bb.b)
153   );
154 }
155 
156 static cpTransform
157 cpTransformBoneScale(cpVect v0, cpVect v1)
158 {
159   cpVect d = cpvsub(v1, v0);
160   return cpTransformNewTranspose(
161     d.x, -d.y, v0.x,
162     d.y,  d.x, v0.y
163   );
164 }
165 
166 static cpTransform
167 cpTransformAxialScale(cpVect axis, cpVect pivot, cpFloat scale)
168 {
169   cpFloat A = axis.x*axis.y*(scale - 1.0);
170   cpFloat B = cpvdot(axis, pivot)*(1.0 - scale);
171 
172   return cpTransformNewTranspose(
173     scale*axis.x*axis.x + axis.y*axis.y, A, axis.x*B,
174     A, axis.x*axis.x + scale*axis.y*axis.y, axis.y*B
175   );
176 }