1 module chipmunk.cpVect;
2 
3 import chipmunk.chipmunk_types;
4 
5 extern (C):
6 
7 const cpVect cpvzero = {0.0f,0.0f};
8 
9 // In the C library these are static inlined functions in the header.
10 // We reimplement them here rather than binding to them.
11 
12 /// Convenience constructor for cpVect structs.
13 static cpVect cpv(const cpFloat x, const cpFloat y)
14 {
15 	cpVect v = {x, y};
16 	return v;
17 }
18 
19 /// Check if two vectors are equal. (Be careful when comparing floating point numbers!)
20 static cpBool cpveql(const cpVect v1, const cpVect v2)
21 {
22 	return (v1.x == v2.x && v1.y == v2.y);
23 }
24 
25 /// Add two vectors
26 static cpVect cpvadd(const cpVect v1, const cpVect v2)
27 {
28 	return cpv(v1.x + v2.x, v1.y + v2.y);
29 }
30 
31 /// Subtract two vectors.
32 static cpVect cpvsub(const cpVect v1, const cpVect v2)
33 {
34 	return cpv(v1.x - v2.x, v1.y - v2.y);
35 }
36 
37 /// Negate a vector.
38 static cpVect cpvneg(const cpVect v)
39 {
40 	return cpv(-v.x, -v.y);
41 }
42 
43 /// Scalar multiplication.
44 static cpVect cpvmult(const cpVect v, const cpFloat s)
45 {
46 	return cpv(v.x*s, v.y*s);
47 }
48 
49 /// Vector dot product.
50 static cpFloat cpvdot(const cpVect v1, const cpVect v2)
51 {
52 	return v1.x*v2.x + v1.y*v2.y;
53 }
54 
55 /// 2D vector cross product analog.
56 /// The cross product of 2D vectors results in a 3D vector with only a z component.
57 /// This function returns the magnitude of the z value.
58 static cpFloat cpvcross(const cpVect v1, const cpVect v2)
59 {
60 	return v1.x*v2.y - v1.y*v2.x;
61 }
62 
63 /// Returns a perpendicular vector. (90 degree rotation)
64 static cpVect cpvperp(const cpVect v)
65 {
66 	return cpv(-v.y, v.x);
67 }
68 
69 /// Returns a perpendicular vector. (-90 degree rotation)
70 static cpVect cpvrperp(const cpVect v)
71 {
72 	return cpv(v.y, -v.x);
73 }
74 
75 /// Returns the vector projection of v1 onto v2.
76 static cpVect cpvproject(const cpVect v1, const cpVect v2)
77 {
78 	return cpvmult(v2, cpvdot(v1, v2)/cpvdot(v2, v2));
79 }
80 
81 /// Returns the unit length vector for the given angle (in radians).
82 static cpVect cpvforangle(const cpFloat a)
83 {
84 	return cpv(cpfcos(a), cpfsin(a));
85 }
86 
87 /// Returns the angular direction v is pointing in (in radians).
88 static cpFloat cpvtoangle(const cpVect v)
89 {
90 	return cpfatan2(v.y, v.x);
91 }
92 
93 /// Uses complex number multiplication to rotate v1 by v2. Scaling will occur if v1 is not a unit vector.
94 static cpVect cpvrotate(const cpVect v1, const cpVect v2)
95 {
96 	return cpv(v1.x*v2.x - v1.y*v2.y, v1.x*v2.y + v1.y*v2.x);
97 }
98 
99 /// Inverse of cpvrotate().
100 static cpVect cpvunrotate(const cpVect v1, const cpVect v2)
101 {
102 	return cpv(v1.x*v2.x + v1.y*v2.y, v1.y*v2.x - v1.x*v2.y);
103 }
104 
105 /// Returns the squared length of v. Faster than cpvlength() when you only need to compare lengths.
106 static cpFloat cpvlengthsq(const cpVect v)
107 {
108 	return cpvdot(v, v);
109 }
110 
111 /// Returns the length of v.
112 static cpFloat cpvlength(const cpVect v)
113 {
114 	return cpfsqrt(cpvdot(v, v));
115 }
116 
117 /// Linearly interpolate between v1 and v2.
118 static cpVect cpvlerp(const cpVect v1, const cpVect v2, const cpFloat t)
119 {
120 	return cpvadd(cpvmult(v1, 1.0f - t), cpvmult(v2, t));
121 }
122 
123 /// Returns a normalized copy of v.
124 static cpVect cpvnormalize(const cpVect v)
125 {
126 	// Neat trick I saw somewhere to avoid div/0.
127 	return cpvmult(v, 1.0f/(cpvlength(v) + CPFLOAT_MIN));
128 }
129 
130 /// Spherical linearly interpolate between v1 and v2.
131 static cpVect
132 cpvslerp(const cpVect v1, const cpVect v2, const cpFloat t)
133 {
134 	cpFloat dot = cpvdot(cpvnormalize(v1), cpvnormalize(v2));
135 	cpFloat omega = cpfacos(cpfclamp(dot, -1.0f, 1.0f));
136 
137 	if(omega < 1e-3){
138 		// If the angle between two vectors is very small, lerp instead to avoid precision issues.
139 		return cpvlerp(v1, v2, t);
140 	} else {
141 		cpFloat denom = 1.0f/cpfsin(omega);
142 		return cpvadd(cpvmult(v1, cpfsin((1.0f - t)*omega)*denom), cpvmult(v2, cpfsin(t*omega)*denom));
143 	}
144 }
145 
146 /// Spherical linearly interpolate between v1 towards v2 by no more than angle a radians
147 static cpVect
148 cpvslerpconst(const cpVect v1, const cpVect v2, const cpFloat a)
149 {
150 	cpFloat dot = cpvdot(cpvnormalize(v1), cpvnormalize(v2));
151 	cpFloat omega = cpfacos(cpfclamp(dot, -1.0f, 1.0f));
152 
153 	return cpvslerp(v1, v2, cpfmin(a, omega)/omega);
154 }
155 
156 /// Clamp v to length len.
157 static cpVect cpvclamp(const cpVect v, const cpFloat len)
158 {
159 	return (cpvdot(v,v) > len*len) ? cpvmult(cpvnormalize(v), len) : v;
160 }
161 
162 /// Linearly interpolate between v1 towards v2 by distance d.
163 static cpVect cpvlerpconst(cpVect v1, cpVect v2, cpFloat d)
164 {
165 	return cpvadd(v1, cpvclamp(cpvsub(v2, v1), d));
166 }
167 
168 /// Returns the distance between v1 and v2.
169 static cpFloat cpvdist(const cpVect v1, const cpVect v2)
170 {
171 	return cpvlength(cpvsub(v1, v2));
172 }
173 
174 /// Returns the squared distance between v1 and v2. Faster than cpvdist() when you only need to compare distances.
175 static cpFloat cpvdistsq(const cpVect v1, const cpVect v2)
176 {
177 	return cpvlengthsq(cpvsub(v1, v2));
178 }
179 
180 /// Returns true if the distance between v1 and v2 is less than dist.
181 static cpBool cpvnear(const cpVect v1, const cpVect v2, const cpFloat dist)
182 {
183 	return cpvdistsq(v1, v2) < dist*dist;
184 }
185 
186 /// @}
187 
188 /// @defgroup cpMat2x2 cpMat2x2
189 /// 2x2 matrix type used for tensors and such.
190 /// @{
191 
192 // NUKE
193 static cpMat2x2
194 cpMat2x2New(cpFloat a, cpFloat b, cpFloat c, cpFloat d)
195 {
196 	cpMat2x2 m = {a, b, c, d};
197 	return m;
198 }
199 
200 static cpVect
201 cpMat2x2Transform(cpMat2x2 m, cpVect v)
202 {
203 	return cpv(v.x*m.a + v.y*m.b, v.x*m.c + v.y*m.d);
204 }